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I. Introduction

Under certain smoothness and controllability assumptions the solutions

of broad class of optimal control problems is described by the Hamilton-

Jacobi-Bellman equation [1). Under some further restrictions, the optimal

state-feedback control law can be computed analytically once the solution

of this equation is known. In certain applications (e.g., [23), the

global nonlinear control law has been shown to offer significant advantages,

in performance as well as implementation, over local linearized control laws.

The problem of obtaining approximate solutions of the Hamilton-Jacobi-

Bellman equations, therefore, has received considerable attention. Quasi—

linearization (3], power series (4], and global analysis techniques [5J ,

(63, (73, to mention but a few examples, have been applied to this problem.

The purpose of this brief paper is to point out a functional expansion

technique which is applicable to the solution of the nonlinear partial

differential equation that is obtained when the optimal control can be

expressed analytically in terms of the cost-to-go. Analytical examples

are presented which provide an indication of the nature of convergence of 3
the method. A complete numerical analysis of convergence is not provided

here (and is probably best pursued in the context of individual applications); I
but it is suggested that the functional expansion approach is often better— j
suited than power series methods for num erical computations.
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II. Nonlinear State-Feedback Laws for a Class of Optimal Control Problems

In this section , we give an explicit statement of the class of optimal

control problems which can be addressed using the functional expansion

techniques of the following section , and display the Hamilton-Jacobi—Bellman

(HJB) equation characterizing the optimal control law.

Let (t01t1) denote the time interval of the problem and let the space

U , of admisable controls be a convex open subset of PC((t 0 ,t1J, t) , the

~ I space of piecewise continuous functions on (t
0
,t
1
] taking values in RZ .

We seek an optimal control u~gtJ to minimize the functional J: U4R defined

by
1

J(u ) J L(x (t) u (t ) )dt  (1)
to

subject to the constraints

I
x (t) f(x (t ),u(t ) ) (2)

x(t0) (3)

n rThe functional L: R xR 4 R is assumed to take the form

L(x ,u) — u ’ u + Q(x) (4)

- 
where Q(x) satisfies

(i) Q(x) Q(-x) , and Q(x) > 0 for all XER~, x~’0.

(ii) llin Q(x) = 0; him Q(x) > q > o
I lx i  i—’0 I lx i  ( + ~~~ I (x ( ~ 

—

(iii) Q(x) is analytic in x.

The function f :  RnXRr 9 R~ is assumed to take the form

—. 
~~~~~~~~~~~~~~ _________ •
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f(x ,u) Ax + Bu + f(x ,u) (5)

where

n
~ (x , u) f 0 (x) + ~ e~u ’(F 1~ f 1

(x) + F
2
.(X)u) (6) 4

i—i

The following additional assumptions are imposed on f :

(iv ) (A ,B) is a completely controllable pair.

(v) f(x,u) is analytic in x, for all utR
2
~.

(vi) him I I~’(x,u) II 0
Ilx Il~0 ( ( lx i i  +

11u1190
(vii) him I (f Cx) II — 0; him I IF (x) (J — o.

11 * 11 0 0 11x 1 140 2i

In (6) , e~ denotes the ith unit basis vector , f
0
: t-+R~, f1

: R
1
~9R

5
,

and F
2~
: R R ’~~~. Under assumptions (iv)-(vii), i,t c~n be shown

(8] that (2) is (uniformly) completely controhlable)

Consider the truncated problem obtained by replacing to by ~ eIt 0.t 1
]

and *0 by x
~ 

in (l)-(3)  and assume that there exists an optimal control

for each 1. Let the value function

V ( x , T ) :  R~x(t 0,t1I ~ R (7)

be defined as the (m in imum) value of the cost-to-go, which is achieved for

control u~. V is assumed to be twice continuously differentiable with respect

to x and continuously

~The time-varying case can also be considered , by requir ing tbat the fore-
going properties hold uniformly for t~(t 0,t1].
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differentiable in t.

Then the value function satisfies the Hamilton-Jacobi-Bellman equation

for problem ( l ) — ( 3 )

— - mm fu ’ U + Q(x ) + f (x ,u)) V (x ,t 1
) 0 (8)

u(t )

The minimizing control is given in feedback form by

u*( t) - - ~~~~~
{ I + 

~~ 

~~~~~ (x *( t ) . t )(F~~~(x* (t) ) + F2i (x *(t ) ) ) }~~~
.

-~~~~~ (x *(t ) ,t )  + ! (x *(t) .t)F1~ f ( x * (t ) ) }  (9) 

~ 
~~~~~~~

Inserting (9) in (8) and simplifying terms gives rise to a partial dif-

ferential equation in the cost-to—go, which is written-out here for future

ref erence:
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- = 

~ 
[•

~~ 
B + ) 

~~~~~~

— f~ Fj~ ] + 
~ i~l ~~

— (F~~+P2~
))2 •

[B
. 

~~~~~~ + 
~

‘ 

~~
-
~~~
- F

1~
f
1] 

+ ~ + ~ !-_ 
(Ax + f 0

) -

_ 1 
~~ — B [ I + 1 

~ —~ (F’. + F .) l 1[ B’~~ + ) —
~~~~~ F f2 ax 

~ 
2 

~~~ 
ax~ 2i 2i 1 I 3x i~l ax~ 

ii 1

- .a~~ F ~~ + ~— f ’  F ’2 
~~~~~ 

ax~ L i—h ax1 1 hi

+ 4 
~ 

~~
!_ (F~~. + F2 .) ]~~ F1~f 1 ~~~~~~~~~~

+ I ai— I -~~-- B + 
~

‘ -~~— f ’ F ’  111 + (F’ + ~ )1~~
j=l ax j  I ax i~l 

ax1 1 liJ [ 2 i=l ax~ 2i 2i j

F2~ [i + 4 
~L 

-~~ (F . + F2.)] l[B’ .~! + 

~

Wi th the boundary condition V (x t ) = 0
(10)

By redefining the time variable as t
1
-t, a pure initial value problem

with V (x, = 0) = 0 is obtained. The Cauchy-Kowalewski Theorem (9] can

be applied to guarantee local existence and uniqueness of solutions to (10)

about = 0; the foregoing hypotheses further guarantee that such a solution

can be uniquely continued to = t
1 
and thus establish the smoothness pre-

requisite for the functional expansion technique to be introduced in the

next section .

~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~ _ _
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In the sequel, we will constder examples where l int t1 °‘t in this

case a solution of the algebraic equation obtained by setting the left—ha nd

-• side of (10) to zero can be guaranteed under the additional hypothesis that

v satisfies the conditions of Lyapunov ’s second theorem [10] . Bellman and

~~~~ Ill) explored analytic methods for this problem under the fur ther

assumption that f(x u) — 0 in (5) ; their work indicates the considerable

complexity of the nonlinear feedback problem.

Equation (10) may be regarded as a special case of a more general

class of problems to which Bellman ’s functional expansion technique applies;

we use it as motivation to introduce the more general notation for the next - •

section. Transferring all terms in V to the left-hand side and identifying

v with V, and g with Q, the only remaining term on the right-hand side, we

may write

N v = g v(*,T1 
0) 0 (11)

where the nonlinear operator N can be viewed as a mapping from the Bartach

space CI
~

2 (R2%x(0 ,t13 ; R) into itself , or more generally as a mapping from

one Banach space to another.2

By virtue of the preceding assumptions, there is a related linear-

quadratic control problem whose solution is known ; the HJB equation for it

is denoted

• N~ v0 — g0 ; v0 (x ,t1 0) 0 (12)

2Further definition of the topology is omitted because it would unnecessar ily
complicate the presentation.

- 
S

~

-. ~~~ - --~~~~~ ~~• ~~•- -- -- ~~~~~~~-
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where
3v ’

N0v0 - —
~~~~~ + ~~

- ~~ BB’ ~~~~ - Ax ; g~ = x ‘Qx -

is the first non-zero term in the Taylor series expansion of Q(x) ;

Q~;j~fl is a positive-definite syimnatric matrix by virtue of assumptions ( i ) —

(iii)

The main point of this brief paper is that eq. (12) , the natural auxiliary

equation for solving (11) happens to be nonlinear and thus a nonlinear ~ - •

tension of Bellman ’s technique is required

- - •,~~~ -

- -

- ,.~
- 

- S

- 

—5- -- - - - 5  - - .  

~~~
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III. A Functional Expansion Technique

The objective is to determine the solution of a nonlinear functional

equation , N~~~ — g, on the basis of the known solution of a related nonlinear

auxiliary equation, N0v0 = g0. This is done by construct ing a sequence of

approximating solutions ~
k, k 0,1, . . . ,  with v° satisfying the auxiliary

equation , such that lint = v. The continuation method (12] for the con-
kstruction of {v I is based on interpreting the identity

N
0v = g0 + ( ( W 0—N) v + (g—g

0
)] (13)

as a continuation to £ = 1 of the class of problems - -

I
s.: .

N
0v = g

0 + £ [(N0—N) v + (g -g0
)]  (14)

Note that when C = 0, v0 solves (14) and when C = 1, the desired solution,

v, solves (14). Thus it is natural to expect that there should exist a

series expansion in c for v about v0:

• 2v~ = v0 + C v1 + £ v2 + ... (15)

If l i ( N0_ N)v iI and ~~g-g0 ( (  are sufficiently small , one may expect that

the series will have a radius of convergence greater than unity (the norms

being interpreted in an appropriate space) . In this case the sequence of

approximating solutions

k k
v = ~

i—0
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will converge as desired .

Bellman 1131 introduced a “fundament~ 1 tcchnique~’ for recursively com-

puting the function v~~ 1 in terms of V
0
.... ,v , which was illustrated by

means of an example involving a linear auxiliary equation. We shall illustrate

the essential procedur e for using a nonlinear auxiliary equation and show

that the recursion relation remains linear in ~~~~~ Formally, the procedure

is to substitute the series expression (15) into (14) and to equate terms

in like powers of C. Volterra (14 , p. 24] has developed an “extension of

Taylor ’s theorem” to a class of functionals, which can be applied to show

that there exist operators N
1
, N2 , etc . such that

N
0 

v = N0
(v0 + C v1 + ....) (16)

= N0 v0 + ~N
1

(v0)v1 + C
2N
2
(V
0
,V1

)v
2 

+

and operators A W~~~, A N
2
, etc., such that

A N0 V
t 

= (N0
_ N)v

~

= (N0
—N ) (v0 + C v 1 + C2v2 + ...)

= A N0 v0 + c1~ N1
(~.0)v

1 + ~
2 M1

2
(v
0
,v
1
)v
2 

+

(17)

A further propert y of the operators N 1, i > 1 is asserted by the following

lema:

- -
~~~~~~~~~~~~~ ~~~~~~~~~~~~~ ~~~~~TZ ~~~L — ~-- -~~~~ 

—----.--
~ -



_________________________________________________
-11-

Lemrn~ : Under the conditions descr ibed in (14 , p. 2 4 ) ,  the operators

are affine in v ., given v ...v. , i.e.
1 0 i—l

N1(v0....v~~1)v. = L ( v 0) v .  + N.(v 01.. ., v 1
) (18)

This result is established in the appendix.

From (l4)—U8) we may then conclude that the v . can be computed

recursively from the equations

N0v0 = g0 (solution assumed known) .

L(v 0)v 1 = AN0v0 -~~~0 - N1(v0) ;  ~~0 = g 0 - g  ;

~S

= AN1
(v

0
)v

1 
- N2

(v0,v1
) (19)

L(vo
)v

k 
= ANk l (vo~

....v
k 2

)v
k l  

- N
k

(v
O
,. .

We remark that for the case of a linear auxiliary equation (as considered

by Bellman) , say N
0 

— L
0
, then the operators L in (19) are independent of

and are in fact all equal to L0. In the special case noted previously,

Bellman and Bucy (l lj  obtained a procedure similar to (19) .

To illustrate the recursion (19) , we apply it to the particular problem

(10) with the simplifying assumption F2 . = 0, i = 1,. ..,n , and show that

more can be said. The first equation of (19) corresponds to (12) . By

applying the Lemma , it can be shown that the n-th equation takes the form

______________________________ 
_______ S — — 

______

-- —--~-
,--.-

~~~~~~~~
-- -~~~

—
— ..3.~~~ -‘~ 

— 

~~ — —— ~~~~~~~~~~~~~~~ 
—

~~~~~~~
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L(v
o

)v
k 

= ~~~~~ - 

[~~

- ~~~ BB’ —
~
-2- + 

~
- _

~~L BB’ + Ax

= A Wk l
(vo,...,vk 2

)v
k l  

— M~
(V

o ,.. ..Vk l
) ( 20)

It is well—established ((11 , (5) , [15) ) that (12) has the solution

V0 (x , t) = x ’ K0 (t )x (21)

with

- K~ = K0A + A ’K0 
- KØBB ’K0 + Q; K(t 1

) = 0 (22)

and thus

(L(v
o
)V
k
J(x,t) = —

~~~ (x ,t) -f x ’(A ’ — 1(
0
(t)BB’) —~~~ (x,t); vk

(x,t
l
) 0

(23)

To find Vk
(x t) then , requires the solution of a linear variable-

coefficient first—order partial differential equation in n+l independent

variables.

While a complete convergence analysis lies beyond the scope of this

paper , we merely indicate some of the considerations involved. Since

Vk:R~
x(t

O
,t
lJ 4 R, some means of dealing with the unboundedness of l i x i l

must be provided if numerical solutions are to be considered. One means

— is to seek a solution for l i x i l  < p, where p is chosen suff iciently large

to accomodate all initial conditions of interest; in this case it is

necessary to verify that the solution for li x i l < p at time t does not depend

on the solution for lix il > p, for t C[t , t
1

] .  That this is in fact the case,

can be seen by

-r 

~~~~~~~~~~~~~~~~~~~~~ 
—---

~~~~
-
~~~

—
~~ 

S S
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applying the method of characteristics to (20), and noting from (23) that

the hypothesis (iv) of complete controllability of (A,B), along with hypo-

thesis (i)-(ii), which imply that Q is positive definite, imply further that

(A
0
-BB’K

0
(t)) is uniformly stable , and thus the characteristics diverge f rom

x 0  as increases from 0 to t1. Also, it is to be expected that

lint Vk (x .t) °-~ for each t C(t 0,t1
]; hence the best convergence result

fl x I )~~~

that might be expected is that J1V (x ,t) 
~J < z ’~e~~~ ~ for some values of M~0

and C$>O this is much weaker that the usual bounds employed in solving p.d.e. ‘s

Finally, the aforementioned conditions on M ( U 0— N ) v I I  and flg-g0 I~ relate

to the rate of growth of the dr iving terms on the right-hand side of (20)

as n increases; in fact , these terms have been approximated to third order 
S

by the proposed auxiliary equation.

A useful technique that is exploited extensively in the exami~les of

the following section is separation of variables. Certain problems may be

solved exactly by this method. Even in cases of numerical computation, a

multinomial expansion of V can reduce the computations to solving a

finite system of ordinary differential equations in the time-variable alone.

In these cases , the control law approximation

= - 
~~

- ~B’ ~ (xk (t) , t) + ~~ -~~~ — (x k ( t ) , t )F
1~ f 1(x k

(t ) )

= — 4 ~ ~B’ 
~~~~ 

(xk (t ) , t) + r-1 (xk (t) , t)F 1~ f 1
(xk (t) )~

j— l~~ 1=1 i
(24)

- - ~~~~~~
— i_ —~~ 

—
~~~
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can also be expressed as a power series in (the Solution of (5) with

control uk ) 3  however , this series is not in general the same as the power

series for the optimal control law obtained directly from a series solution

of (10).

Although there is a formal correspondence in these cases between

solutions obtained by power series and by the functiona l expansion technique

it is thus difficult to evaluate the relative computational merits of the

two procedures. The relative difficulty of computing the functional ex-

pension operators M~~. N~. i > 1 must be balanced by the relative simplicity

of solving the recursion (19), for which standard numerical procedure are

available, and the relative ease of testing for convergence. Further

numerical analysis of the functional expansion technique appears warranted ,

particularly for problems that are not readily amenable to power-series

solutions. 

—•--
~~~~~~

- -

~~~~~~~~~~~~ - 5, - - 5. 
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IV. Examples

Example 1:

A scalar control u on (t
0
,t11 

— t0,T1 is sought to minimize

J(u) f (u2(t) + x
2
(t) + 4 x4(t))dt (25)

subject to the scalar state equation

x(t) — u(t) + px
3(t) ; x(t~) — x

0 
(26)

The opt imal control law corresponding to (9) is

u*(t) - - (x*(t),t) (27)
2 ~x S

and the HJB equation corresponding to (10) is:

= 1(~~~ )
2
... P x3 ~~ - x2 - 4 x

4 ; V(x ,T) = 0 (28)

The system (19) takes the form

av
0 - 1(av0 )2 - x2 

; V
0
(x,’r) 0

a’, / 3 v ’ \3 v  41 h O t  1. x 3 0
~ r~

— - -

~~~~~~ 

- — - )ix -s—-- ~ V
1
(x,T) 0 

—

1 / ~ \ 
aV~ 1 1k_i (avk_l\( av~~ \ ] 3 

____- 
~~~ ~i1L 

\Thx )\~~/j  - ‘-~~ ax V
k
(x.’r) 0

k — 2,3,... 
(29)

_ _ _  _ _ _ _ _  - - -
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S 

The solution of the first tauzihiary) equation is known (17) to be

2 dK0
(t) 2V0

(x,t) K
0
(t)x 

dt 
- 1(

0 (t) + 1 0 ; )(
0
(T) 0 (30)

so K
0
(t) — tanh (T-t). V

1
(x,t) may be found by separation of variables as

dK (t)
V1

(x 1~t) — K (t)x — 4tanh (T—t)K (t) — — .1 + 2ptanh(T—t); K
1
(T) 0

(31)

which has the solution

I
K
1
(t) = (1 — cosh 4 (T— t ) )  + [~~~~~~ 

(T— t) + sinh 2 (T—t)

+ 

~-j 
sinh 4 (T—t) ) cosh 4 (T-t) (32)

Similarly,

V
2
(x,t) = 1C

2
(t)x6; 

~~2
(t) — 6K

0
(t )K

2
(t) = 4K~ (t) — 4pK

1
(t); I(

2
(T) = 0

(33)

All of the succeeding equations may be solved by separation of variables

and use of the known variation of constants formula for the solution of a

scalar time-varying linear equation. The optimal control approximation

thus assumes the form

= — I ~ (i+l)K
~
(t)x

~
2
~~~~ 

(34)
2

It should be noted that this is not the same type of approximation obtained

from ordinary power series or from singular perturbations in the parameter

LI (if its value is small).

— -:‘.- 
-

~~~~
S S5~~~~~~ 

- - - ~~~ ~~~~L- . . ~~ —

5~~
---

~~~~~— —
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Example 2 ; 1

A scalar bilinear control problem on (t 0
,t1

) [0 , 1 is to minimize

5 

3(u) = J (u 2 (t) + x
2
(t) + } x~ (t) + x6(t))dt (35)

subject to

~ (t) ax(t)  + bu (t) + cu (t )x ( t ) ; x (0) = x0 (36)

The optimal control law corresponding to (9) is

S 
u~ (t) - (b+~~ * ( t) ) -~~~ (x~ C t) ,t) (37)

The limiting form of the HJB equation (as t1 
-
~~~‘) is I

(38)

S The limiting form of (19) is:

b /a~0\2 13v 0\ 2

~i-~
—
~ J ~~ax~~~~_/ = x

/b a”
O \( ~~~ \ ~ 

av0 \2- aXJ\~~ -5 / ~~~~~~~~~~~~~ I

(b 
f.~ ~~ 

~~~(.~s)(!~,) +~~~~~~~~ 
- 

b (.±v~~)2 
~,



— —‘5 -S 
~~~~~~~ 

-~~~ ~-5 — __555_5’5__ 
~;~

55_ 
~~~ _,_~__~~~~ —S—S — .~.r-~—- 

—--

~~~
•‘-- — — 

~~~~~ -~ ~~~~ ‘T~~.. 
— —-S — 5’. ~~~~~ 1~t_

S i ’  I
-i 

~~ 
-

~~~~~~~~~~~~~~~~~~~~~~ 

= ~~x (  
i )

~
- I ~ - ax £ x ( ~ av3 .  

~!I\ + x6 - 
~ 9v3_~ .~~ i\

-
~ ax / ax 4 \i—o ax ax / ax ax /

I ~~ - — /
k-l aVk_~_l !‘i\ - (

k-h aVk_~_l 
~~~~~~~~~- , 2 ax / 3x 4 

\i;o 
ax ax / ~~ 

ax ax

k = 5,6,7 (39)

Applying the same idea as in the previous example we find

V
0
(x) = K0x2 ; bX~ — 2K

0a 
- 1 0 (40)

which has the (stable) solution K0 
? 

+ h2+b 
. Taking

V
1

(x) — X1x3 
; 3bK

1
K
0 

— 3K1a = cK~ (41)

gives K
1 

c [3bK
0
-3a)~~ K~. Similarly, the coefficients for V

k
(x) ~~~

k+2

can be identified. The approximate optimal control is then

• 
u
k
(t) — _ (b+cx

) ~ (i+2)K~ ~
(i+1) (42)

i=0

In this steady—state case where power—law solutions for V~ (x) can be assumed

we thus see that the coefficients will be uniquely determined from the solution j -

of linear equations, once the proper (stabilizing) solution of the auxiliary

equation is chosen.

-- ~~~~-5-~~~~~~~
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V. Conclusions

In this brief paper, we have pursued the extension of a functional

expansion technique suggested orig inally by Bellman and showed that it has

interesting consequences when applied to the solution of the Hamilton—Jacobi-

Bellman partial differential equation for a certain class of optimal control

problems. While this is perhaps implicit in Bellman’s own work, we consider

it worthwhile to have clarified the nature of the continuation hypothesis

involved, to have identified the explicit requirements for convergence

(although a formal proof has not been provided), and to have more clearly

— delineated the class of problems where the technique is potentially most

useful. Furthermore, we have distinguished this technique from power

series methods which have been more ccxntnonly applied 1 but which can yield

inferior solutions to highly nonlinear or time-varying problems.



_ _  _ _ _  __ 
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~ppenth.x: Demonstration of Lemm,~

Given a nonlinear and sufficiently regular operator A~~ operating on a

convergent power series

V~ ~ (4)
i—0

it is to be demonstrated that the functional expansion

= y N
1

(v
0
,...v

~.,i
)v
~ c

i (44)
1=0

has affine terms
a

W .(v
0
,. ..v

1
)v~ = L (v

0
)v . + ~~~~~~~~~~~~~~~~~ . .,v~_1)

This can be seen by direct recourse to Volterra ’s definitions of the S

operators W .(h4, p.24~ :

= 4[~~s_r]~~o(v ) i = 1,2,...
c=0

5,

For instance (i=l):

t1 ~
P4 ( v )

= 5 5 (x ,t) v
1

(x ,t)dxdt (46)
to R

where 6N0/6v0 is the functional (Frechet) derivative of li0 with respect

to v at v
0 
and evaluated at Lx,t]c R~x(t

0
,t
1
). This is seen to be a linear

operation on v1. For i2 , we find

- ~~~~~~~_ - ~~~~~~~~~~~~~~~ -~~~~ 

~~ -..-. -



- .5-- - _~~ -.5SS5-S55* ~~~~~~~_55 S~5-S_ _ -S55-555~~ 5 
---*-—-

~~~~ - -5 ’ -- — ,-----—---.w—

- - - — * 
~~~~~~~ i =-.~5-._~~, 

—__w~_~~~~~ -~~~~-~~~~~ --- ,w-~~~~ 
‘

~

—21—

4j [~~~
- No(:c)] = ~~~0 (v

0
) Ix , t ] v 2 

(x ,t)dxdt J

+
~~~~~~~

- 

~ L-~[~
’ 
~n 

~ (v0
)Ix .t;~~.t1vi

(x~t)dxdt]vi
(E~ t)d~dt

~ L(v~) v~ + N
2

(v
0
,v
1

) (47)

4

The result follows by induction.

5,

-5-
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